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Phase transitions of the 6-clock model in two dimensions 

Atsushi Yamagata and i h o  Ono 
Department of Physics, Faculty of Science, Tokyo Institute of Technology, Oh- 
okayama, Meguro-ku, Tokyo 152, Japan 

Received 20 July 1990 

Abstract. It is confumed that thereexists a Kostertitz-Thouless (KT) like phase in 
the ferromawetic 6-clock model on the square lattice through studies of the interfacial 
free energy estimated by Monte Carlo simulations. We find that lower and upper 
transition temperatux- are TI = 0.75 and Tz = 0.90 reipectively, and that the 
critical exponent 7 for the correlation function in the KT-like phase varies from 0.15 at 
Ti to 0.26 a t  T1. The correlation length < just above Tz is estimated directly from the 
magnetization protile, and it is shown to behave as Y exp(bt-'12), t = (T- T2)ITz. 
as approaching the KT-like phase. 

1. I n t r o d u c t i o n  

The 6-clock model has Z, symmetry. Each spin can have one of six different directions 
in t,he plane of S"E spacel Its Hsmiltonizn is &scribed by 

H = - X c o s ( Q i - B j )  fli=27rni/6 , n i = O ,  1 , . . . , 5  (1) 
(i ,j)  

where the sum is over nearest-neighhour pairs on the square lattice (In this paper 
physical quantities are presented in units of the strength J of interactions with k, = 1.) 

As is well known, the XY model in two dimensions has no long-range order a t  
any finite temperature (Mermin and Wagner 1966) but a phase transition occurs a t  
a finite temperature T, (Kosterlitz and Thouless 1973, Kosterlitz 1974). Below T, 
its correlation function exhibits a power-law decay with a temperature-dependent 
exponent 7, ( cos(8, - 8,)  ) - r-q. This phase is called the Kosterlitz-Thouless (KT) 
phase. 

Jose el a/ (1977) first investigated the X Y  model with pfold symmetry-breaking 
fields h,. In the limit h, - +m it turns out to be the ps ta te  clock model. This field 
may be attributed to  crystalline field in real magnets and the possible values ofp are 2, 
3 , 4  and 6 due to  symmetries of lattices. I t  was  shown by use of the Migdal-Kadanoff 
real-space renormalization group approximation t,hat the ps ta te  clock model h a s  two 
phase transitions a t  TI and T, (TI < T,) when p > 4, and that its intermediate phase 
is the KT phase. Elitzur el a/ (1979) studied a discrete Villain model whose symmetry 
was Zp. They showed by using self-duality and correlation inequalities that  there 
exists a disordered and massless phase (the correlation length diverges) if a Villain 
model (Villain 1975) or a neutral Coulomb gas model (Kosterlitz and Thouless 1973, 
Chui and Weeks 1976) has a corresponding phase. 

0305-4470/91/01M65+11$IU.50 0 1991 IOP Publishing Ltd 265 



266 A Yamagata and I Ono 

Tobochnik (1982) simulated the ps ta te  clock model for p = 4,  5 and 6 using the 
Monte Carlo renormalization group (MCRG) method. He found, for q = 5 and 6, 
the intermediate phase in which the critical exponent q for the correlation function 
varies with temperature. He determined lower and upper transition temperatures to 
be TI = 0.6 and Tz = 1.3 respectively and the critical exponent q = 0.10 at  TI for 
p = 6. Challa and Landau (1986) carried very large simulations of the 6-clock model 
and used a finite-size scaling and a fourth-cumulant (FC) method. They obtained 
T, = 0.68 f 0.02 and Tz = 0.92 f 0.01, q varied between 0.100 at  TI and 0.275 a t  Tz,  
and two phase transitions were assigned to be the KT-type. 

The phase transitions of the 6-clock model are very interesting in connection with 
those of the three-state antiferromagnetic Potts (AFP) model (Wu 1982, 1984). It was 
indicated in two dimensions that the AFP model, modified with weak next-nearest- 
neighbour ferromagnetic interactions, exhibited a KT-like phase (Ono 1984, Ono and 
Yamagata 1990), but that the pure AFP model contained a phase transition only at  
zero temperature (Cardy 1981, Grest and Banavar 1981, Baxter 1982, Jayaprakash 
and Tobochuik 1982, Wang et al 1989). 

The purpose of this paper is t o  confirm the existence of the KT-like phase, and to 
investigate the phase transition between the intermediate phase and the disordered 
phase in the 6-clock model in terms of the interfacial free energy through Monte Carlo 
simulations. In section 2 our method is described. We give the results of simulations 
in section 3. A summary is given in section 4. 

2. Methods 

2.1. Monte Carlo simulations 

The Metropolis Monte Carlo technique (Metropolis et al 1953, Binder 1979, 1984) is 
used to simulate the behaviour of the model on N x N I  square lattices ( N  > N l ,  see 

coexisting bulk ordered phases (Ueno el a/ 1989). For each lattice we set two types of 
boundary condition, one of which brings out no interface while the other does: all NI 
spins on the top and bottom edges of the lattice are fixed to be parallel or anti-paralle 
for each system, and periodic boundary conditions are imposed on the side edges. To 
fix spins on the boundaries is equivalent to imposing infinite magnetic fields on these 
spins. Hereafter we call the above two types of boundary condition the parallel and the 
anti-parallel boundary condition respectively. The spin-site to be updated is chosen 
sequentially and an update state is randomly selected among the five states except 
the current state. The pseudorandom numbers {R"} are generated by the Tausworthe 
method as follows. The nth random number R, is given by R, = R,-,,, fE Rn-L03, 
where fE denotes the 'exclusive-or' operation between binary digits (It0 and Kanada 
1988). We start each simulation from a high temperature with a random configuration 
and then gradually cool the system from it. Energies a t  a certain temperature are 
calculated from the averages over 5 x lo4  Monte Carlo steps per spin (MCS) after 
discarding 1 x lo4 MCS to attain equilibrium. 

2.2. Interfacial free energy 

The excess free energy AF for a certain temperature is evaluated by numerical in- 
tegrations of the excess energy AE between systems with and without interfaces, 

subsection 2.2). Our analysis is based on the interlacia1 free energy formed b etween the 

I 
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starting from a certain temperature To above the transition temperature. Here we 
have selected To so that A E  will be within its standard deviation for the Monte Carlo 
averages. Thus we have (Ueno e t  a/ 1989, Ono and Yamagata 1990) 

The interfacial free energy U is given by U = A F / N  
the interfacial free energy is assumed to be 

The finitesize scaling law for 11. 

u(T, N L )  - N,'-d 5(NL111y) t = (T - Tc)/Tc NII -+ +m (3) 

where d is a dimension of a lattice, 5 is an unknown scaling function and 6(z) + 

constant as 2' + 0 (Fisher e t  QI 1973, Jasnow 1984). Here we use the hyperscaling 
relation p = (d  - 1)u where /I and v are the critical exponent for the interfacial 
free energy and for the correlation length respectively. This suggests U - N t W d  in 
the region where the correlation length diverges. At very low temperatures, where 
interfaces are assumed to be localized, we expect U - N?. Thus we assume for a 
whole temperature region 

u(T, N L )  - N t ( T )  NI  -+ +m (4) 

where a is an  exponent of the size dependence of the interfacial free energy (Ono and 
Yamagata 1990, Yamagata and Ono 1990). If o = 0, we have an king-like long-range 
ordered phase, and if Q = -1 in two dimensions we have a KT-like phase. 

Here the dependence of NII or N, /NII  on U might appear. As seen in subsection 3.1, 
there are no appreciable effects if NII is set to be sufficiently large. Hereafter we have 
ignored the dependence of NI,. 

2.3. Helicity modulus 

To investigate the phase transition between the KT-like phase and the disordered phase 
we consider a helicity modulus T defined by 

where Af is an excess free energy per spin (Fisher e t  a l  1973). The helicity modulus 
was first introduced to study the phase transitions of isotropic spin systems, e.g. 
the Heisenberg model. The ordered phase of such systems has a continuous rotational 
symmetry in the ordered spin direction. The helicity modulus can describe the rigidity 
of the ordered phase against the twist. Though the ordered state in the 6-clock model 
has a discrete symmetry, Z,, in the lowest temperature, we expect that this model 
behaves similar to the X Y  model in the KT-like phase and the disordered phase. 

It can be seen simply that the helicity modulus is directly related to the excess 
energy A E ,  by 
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where p = 1/T (Van Himbergen and Chakravarty 1981, Van Himbergen 1984). Thus 
we can get information for the helicity modulus through AE at a certain temperature 
without numerical integration. 

Though the helicity modulus is defined in spin systems above, i t  may he applied 
to a Bose superfluid. In this case the helicity modulus is given by T = (h /m)2p,  
where p, is a superfluid density (Fisher el a1 1973). Since for the critical exponent q 
of the correlation function there is an equation r )  = m2T/2rrh2p, where m is mass of 
a particle, we get a relation (Nelson and Kosterlitz 1977, Van Himbergen 1984) 

A Yamagala and I Ono 

I 
r )x  ~ 

2npT (7) 

Hence we can obtain the critical exponent r )  through T without use of the finite-size 
scaling fitting. 

3. Resxlts 

3.1. Interfacial free energy 

Figure 1 shows the temperature variation of the excess energy per spin AE for six 
lattice sizes in which NII is fixed to be 50 and N ,  varies from 10 to 20. Error bars are 
calculated using the coarse-graining scheme (Landau 1976) i.e. standard deviations 
are obtained from their ten sub-averages. One can see that excess energies vanish at  
higher temperatures. 

T 

Figure 1. The temperature variation of the excess energy per spin between parallel 
and anti-parallel boundary conditions for the 6-clock model. Lattice sizes are as 
follows. N I ,  = 50. N I  = 10, 0; 12, x ;  14, 0; 16. +; 18. A; 20, I .  

Figures 2(0) and ( b )  show t,he NI, dependence of t,he excess energy per spin a t  
several temperatures (NII = 20, 50,100,and N ,  = 20). One sees that the NI1 depen- 
dence is negligible within the statistical errors. Hereafter Monte Carlo simulations are 
confined to the fixed system of NII = 50. 

The interfacial free energies are shown in figure 3(a) for six lattice sizes. We have 
U zz 3/2 for all lattice sizes a t  T = 0.1. This indicates that  the systems contain 
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Figute  2. 
follows. NI,  = 20, 50, 100; N I  = 20. The f i y r e ~  attached indicate temperatures. 

The N I I  dependence of the excess energy per spin. Lattice sizes aye as 

three flat interfaces a t  very low temperatures (see also figure 4(0)) .  The interfacial 
Free energies decrease with increasing temperature and vanish ai higher iemperaiures. 
One sees clearly that the interfacial free energies are dependent of the Nl a t  interme- 
diate temperatures. Figure 3(6) shows the log-log plots of U against NL a t  various 
temperatures. The data for I n o  are found t o  he proportional to In Nl as far as the 
temperature is lower than 1.0. The exponent a is determined by least-squares fitting 
in figure 3(b ) .  The temperature variation of the exponent a is shown in figure 3(c ) .  We 
can discriminate four phases as follows. (i) T. 5 0.3, a U 0. This suggests that there 
are three flat and sharp interfaces in the systems and this phase is to be the king-like 
long-range ordered phase. (ii) 0.3 < T < 0.75. The exponent a varies from 0 to -1 
continuously. We do not know whether it is the intrinsic nature of this model or if the 
exponent changes from 0 to -1 discontinuously if NII - +CO. (iii) 0.75 5 T 5 0.9, 
a = -1. It suggests that this phase is a KT-like phase. (iv) T > 0.9, a < -1. The 

It is clear that there exists a KT-like phase. The estimations of the t,ransition 
temperatures are not so accurate, but will be comparable to  those estimated by the 
MCRG or FC methods. Our values for lower and upper transit,ion temperahres are 
T., = 0.75 and Tz = 0.90 respectively. For comparison, Tobochnik (1982) obtained 
Z', = 0.6 and T.. = 1.3, Challa and Landau (1986) obtained T, = 0.68 f 0.02 and 

A:n--dn-..d r.h-oa 
",D","CLC" y, ,ac.  
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Figure 3. (a). The temperature variation of the interfacial free energy. Lattice 
sizes are as follows. NII = 50. Ns = 10, 0; 12, x ;  14, 0; 16, f; 18. A; 20, *. 
( b )  The lop-log plot of the interfadal free energy against N I .  The figures a t t d e d  
indicate temperatures. ( c )  The temperature variation of the exponent a for the NI 
dependence. 

T2 = 0.92 f 0.01. Our upper transition temperature T2 should be compared with 
the transition temperature of the X Y  model, Tc = 0.89,0.898(2) obtained by other 
simulations (Tobochnik and Chester 1979, Fernindez el al 1986, Gupta el al 1988). 
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Figure 4. (a) The instantaneous magnetilation averaged on the yth row m(y) 
for the system with the anti-parallel boundary condition is indicated with a line 
whose length is the amplitude Im(y)I in the 9th hexagon from the left. (NI ,  X N L  = 
50 x 20, at 5 x103 MCS) (b) The magnetization (Im(y)I) at T = 1.2 for thesystem 
(Nil x N L  = 50x 30) with the parallel boundary condition. The Monte Carlo averages 

9 " I n 4  .rrC ~r*..-A:~-"-A:".. f " ,"4 .,-- ,-, 'PI.- o~...~,.."",-* ..< /l-.f..~l\ 

against y a t  T = 1.2. The full lines are drawn by the l e a s t - q u e  fitting under the 
assumption that (Im(y)l) Y exp(-y/() and exp(- (N~ + 1 - y)/E) respectively. (d) 
The temperature just above T2 variation of the correlation length. l/(hE)'. The 
full tine is drawn by least-squares fitting under the asumpt im that E N exp(bt-'I2) 
where b is a constant and t = (T - T2)/T2. From this f i p  we get T2 = 0.91 and 
b = 0.82. 

""=& e I" ."L-., Y.>L.UIUL.6 I ,? ,', 'C..Y-."e )I."" "l \,...\s,,, 

3.2. Magnetization profile 

In addition to the interfacial free energy we estimate the magnetization profile. We 
divide the NI, x y l  lattice into Nl rows which consists of NII spins. The magnetization 
for the yth row is defined as 

where the  sum is over N s ins on the yth row. In figure 4(a) the instantaneous 

5 x lo3 MCS is indicated with a line whose length is a n  amplitude Im(y)I in a yth 
,LC""&"" L A Y , , .  Y l l r  I r l *  \'. II ,, '.L - "" ,, '.",, _., "CUr l lVC"  11. 3 " " l r r Y . Y . .  * . I ,  0 L . l L l  

all NII spins on boundaries for the unfavourable system are fixed to  be anti-parallel 
as m(0) = (1,O) and m ( N L  + 1) = ( -1 ,O) .  According to the results in figure 3(c) 
we may clarify the characteristic spat,ial variations of the instantaneous magnetization 
into four temperature regions. (i) The ordered phase (T = 0.1): the directions of 
m ( y )  are parallel and the amplitudes of m(y)  are saturated values in each domain. 

magnetization m ( y )  for t i l P  e system with the anti-parallel boundary condition a t  the 

hnw---- Fvn-  the In<+ / h i  Y hi - Fn Y On\ AI A-e..-;heA :n o , . h m * + : n n  9 1 &ne- 
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Sharp interfaces appear between the different domains. Their locations are between 
y = 2 and y = 3, y = 7 and y = 8, and y = 19 and y = 20. (ii) T h e  transitive 
phase (T = 0.5): the amplitudes Im(y)I are less than 1 except near boundaries, and 
interfaces are not sharp and diffuse. The direction of m(y)  apparently rotates, but 
not in a single harmonic way. (iii) The KT-like phase (T = 0.6) : the direction of 
m(y)  rotates smoothly as 

A Yamagata and I Ono 

The amplitudes of m ( y )  become shorter than those a t  T = 0.5 in (ii). (iv) The 
disordered phase (T = 1.0): the amplitude of m(y)  vanishes Im(y)I L 0 except 
around the boundaries. 

""C p'Lupu*= a LLICbIIU" Y V  scu a ~VllClb.L.IVLI rcr,gur 63 LULIVWD. 111 ,,gu,r: SI", wt. J ' lUW 

the magnetization (I%(y)I) ( (. . .) denotes Monte Carlo averages.) at T = 1.2 for the 
system (NII x N,, = 50x30) with the parallel boundary condition. From figure 4(b) one 
sees the magnetization (Im(y)l) decays exponentially as the distance y or Ns + 1 - y 
from the boundary is increasing. I ts  decay is assumed to obey the correlation length 
( as (Im(y)I) - exp(-y/() or exp(-(N, + 1 - y)/(). Figure 4(c) shows the semi-log 
plots of (Im(y)I) against y a t  T = 1.2. Near the boundary one sees In(lm(y)l) is 
proportional to  y or N ,  t 1 - y except for neighbours a t  the boundary. Therefore 
we get the correlation length a t  T = 1.2 from the slope in figure 4(c). If the 6-clock 
model has a KT-like phase, its correlation length behaves as ( - exp(bt-1/2) just above 
T2,  where b is a constant and t = (T - T2)/T,. Figure 4(d) shows the temperature 
variation of l/(ln()'. Just above T2 (= 0.9) one sees that l/(ln[)' is proportional to 
7'. Thcs we get ?he upper transition temperzture T. L to he n.91 znd the constant b 
to  be 0.82 from figure 4(d). The value for T2 agrees with the result estimated from 
the exponent a within about 1%. T h e  value of the constant b does not agree with the 
theoretical result 1.5 for the X Y  model (Kosterlitz 1974) and b = 1.54f0.01 obtained 
by Challa and Landau (1986). 

9.9. Helici ty  modulus 

In figure 5(a) the data  for ( ~ / T ~ ) ( N ~ / N ~ ) A E  ofthe right-hand side in (6), are plotted 

toward the upper transition temperature Tz with increasing lattice size. The latter 
behaviours are different from those of the XY model. Van Himbergeu (1984) found 
for the X Y  model that  the positions of the peaks were independent of lattice sizes 
and were located a t  T = 0.970f0.005. For the 6-clock model we reported earlier that 
the peaks were located a t  T = 1.0 irrespective of lattice sizes (Yamagata and Ono 
1990). It was because the sizes Nl were too small ( N ,  = 8, 12, 16,20,and N I I  = 20). 
Figure 5(b) shows that the height of the peak increases in proportion to  In N,.  This 
indicates that in the thermodynamic limit the helicity modulus has a finite jump a t  T2.  
This jump corresponds to the universal jump of the superfluid density in helium films 
(nelson and Kosieriiiz iG77, Bishop and Reppy isit?,). These behaviours ace same 
those of the XY model. Thus the phase transition between the intermediate phase 
and the disordered phase can be concluded to  be of the K T  type. This is consistent 
with the results in figure 4(d) or the relation ( .-. exp(bt-'/'). 

Figure 6(a) shows the temperature variation of the helicity modulus for the six 
sizes of lattices. Here we used the r e h i o n  T = 2NLa/a2 (see equation (5)). It is clear 

m r  ̂ __^_^^"  "-..-,LA & -  ""& - "----,"A:-" L.."&l. ^ ^  P̂11̂...̂ r.. c " / 1 \  .... ^ L 

against temperature. The height of t I, e peak increases and its position decreases 

ll, ~1 
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Figure 5. (a) The temperatum variation of ( l / r 2 ) ( N s / N l l ) A E .  ( b )  The N I  d c  
pendence of the peak height. Lattice sizes are 88 follows. N I I  = 50. NI = 10, 0; 14, 
X ;  20,O; 24, t; 30, A. 

that the helicity modulus has no size dependence in the region of 0.75 5 T 5 0.90 
because U is found to be proportional to N;' in this region. Figure 6 ( b )  shows the 
temperature variation of the critical exponent q for the correlation function using 
equation (7). We see that the critical exponent q varies from 0.15 a t  Tl to  0.26 at T,. 
Analysis of the Villain model which bas the same symmetry with the 6-clock model 
predicts that r) varies from 1/9 to 1/4 in the intermediate phase (Jose5 et nl  1977, 
Elitzur el al 1979). Other results by different methods are shown in addition to our 
result. Our result is slightly higher, within 3%, than the theoretical value of T,. 

4. Summary 

We have concluded that there exists a KT-like phase between the Ising-like long- 
range ordered phase and the disordered phase, and that lower and upper transition 
tnmnn.3t..-..- "-- A . . ~ ~  h.. rp - n 7r. "..A T - non r^ "_-" +:..A.. ,L- -"----" 
UL"'pC"Y" 'C"  *LLc 61°C" v y  1, - " . I "  Lll" ', - ".*U( L C U p r c u n r ~ r y ,  ll",,, U l l C  'Ap""c,,I. 

of the size dependence of the interfacial free energy. We have proposed the method 
to  get the correlation length C from the distance dependency of the magnetization 
profile. Under the assumption < - exp(bf-'/?) we have T, = 0.91 and b = 0.82. The 
transition at T, has been concluded to  be of KT-type since the temperature derivative 
of the helicity modulus may diverge in the thermodynamic limit. We have estimated 
the critical exponent q in the intermediate temperatures, which varies from 0.15 a t  T, 
t o  0.26 at T,. 

Finally one should note that the above phenomena are similar to those of the AFP 
model which has weak next-nearest-neighbour ferromagnetic interactions (Ono and 
Yamagata 1990). This will be related to the fact  that the model has six ground states 
(Ono 1984). The details are left for a forthcoming paper. 
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0.5 0.1 0 9  13 

Figure 6. ((I) The temperatme variation of the helicity modulus. Lattice sizes 
are as follows. Nil = 50. N I  = 10, 0; 12, x; 14, 0; 16, +; 18, A; 20, L. ( b )  The 
temperatme variation of the exponent q. The square indicates the result of this work 
(Nil x N I  = 50 x 20). The circle and the cross indicate the results by Tobochnik 
(1982) and Challa and Landau (1986) respectively. The full Line i s  the spin wave 
result (I) = T/2n). The numbers on right side in this figure are values from analyiis 
on the Villain model. 
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